中山大学智能工程学院/广东省智能交通系统重点实验室,广东 广州 510006
李军(1968年生),男;研究方向:交通运输规划与管理;E-mail:stslijun@mail.sysu.edu.cn
纸质出版日期:2020-09-25,
收稿日期:2019-06-06,
扫 描 看 全 文
李军,邓育新,黄柳红.基于服务可靠性的公交到站时刻表编排与评价[J].中山大学学报(自然科学版),2020,59(05):86-94.
LI Jun,DENG Yuxin,HUANG Liuhong.Arrangement and evaluation of bus arrival timetable based on service reliability[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):86-94.
李军,邓育新,黄柳红.基于服务可靠性的公交到站时刻表编排与评价[J].中山大学学报(自然科学版),2020,59(05):86-94. DOI: 10.13471/j.cnki.acta.snus.2019.06.06.2019B055.
LI Jun,DENG Yuxin,HUANG Liuhong.Arrangement and evaluation of bus arrival timetable based on service reliability[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):86-94. DOI: 10.13471/j.cnki.acta.snus.2019.06.06.2019B055.
建立了利用公交历史数据进行公交到站时刻表编排的优化模型,以提升乘客按时刻表出行的搭乘成功率,减少等待时间,改善出行体验。首先,提出了服务可靠性的概念来表示乘客根据时刻表候车能成功搭乘的概率,并基于此引入了历史百分位到站时刻作为参考时刻;然后综合考虑等待时间、运行时间等约束条件,以最大化服务可靠性构建了到站时刻表编排模型,并利用乘客搭乘成功率、平均等待时间等指标来对模型进行评估。最后,选取广州市某公交线路进行了实例验证,并与传统方法进行了对比分析。结果表明,模型编排的到站时刻表能明显提高乘客的搭乘率,减少乘客平均等待时间。
An optimization model of bus arrival timetable utilizing historical data is proposed to increase the riding success ratio
reduce the waiting time
and improve the level of service of buses. The concept of service reliability is introduced to indicate the probability that the riders successfully take the bus according to the timetable
and the historical percentile arrival time is proposed as the control points; then the model to maximize service reliability with the constraints conditions of rider waiting time and bus running time is proposed
and the riding success ratio and waiting time are employed to evaluate the performance of the proposed method. A case study of a bus route in Guangzhou is presented
and the results show that the proposed model can produce a timetable with higher riding success ratio and less waiting time
comparing with traditional method.
交通工程公交时刻表服务可靠性乘客等待时间
traffic engineeringbus timetableservice reliabilityrider waiting time
温惠英, 吴璐帆, 梅家骏. 基于改进AHP法的广佛城际公交满意度模糊综合评价[J]. 中山大学学报(自然科学版), 2018, 57(5): 64-71.
WEN H Y, WU L F, MEI J J. Fuzzy comprehensive evaluation of Guangzhou-Foshan public transit satisfaction of inter-city based on improved AHP method[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(5): 64-71.
杨娜娜, 张青年, 黄健锋. 禁忌搜索与SIC模型结合在公交冗余站点优化中的应用[J]. 中山大学学报(自然科学版), 2015, 54(4): 150-157.
YANG N N, ZHANG Q N, HUANG J F. Improving bus stop redundancy using tabu search algorithm and SIC model[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2015, 54(4): 150-157.
缪芳, 杨晓光, 滕靖. 上海市公布公交时刻表实施推进方案研究[J]. 交通与港航, 2015, 2(6): 34-40.
MIAO F, YANG X G, TENG J. Research on advancing plan for implementation of the public transport timetable in Shanghai[J]. Public Utilities, 2015, 2(6): 34-40.
CHEN M, LIU X B, XIA J X, et al. A dynamic bus-arrival time prediction model based on APC data[J]. Computer-Aided Civil Infrastructure Engineering, 2010, 19(5): 364-376.
VANAJAKSHI L, SUBRAMANIAN S C, SIVANANDAN R. Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses[J]. IET Intelligent Transport Systems, 2009, 3(1): 1-9.
YU B, YANG Z Z, YAO B Z. Bus arrival time prediction using support vector machines[J]. Journal of Intelligent Transportation Systems, 2007, 10(4): 151-158.
YU B, YANG Z Z, CHEN K, et al. Hybrid model for prediction of bus arrival times at next station[J]. Journal of Advanced Transportation, 2010, 44(3): 193-204.
JEONG R, RILETT R. Bus arrival time prediction using artificial neural network model [C]// International IEEE Conference on Intelligent Transportation Systems, 2004: 988-993.
PETERSEN N C, RODRIGUES F, PEREIRA F C. Multi-output bus travel time prediction with convolutional LSTM neural network[J]. Expert Systems with Applications, 2019: 426-435.
WANG L, ZUO Z Y, FU J H. Bus arrival time prediction using RBF neural networks adjusted by online data[J]. Procedia Social and Behavioral Sciences, 2014: 67-75.
YIN T T, ZHONG G, ZHANG J, et al. A prediction model of bus arrival time at stops with multi-routes[J]. Transportation Research Procedia, 2017, 25: 4623-4636.
YU B, LAM W H K, TAM M L. Bus arrival time prediction at bus stop with multiple routes[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1157-1170.
CEDER A, GOLANY B, TAL O. Creating bus timetables with maximal synchronization[J]. Transportation Research Part A: Policy and Practice, 2001, 35(10): 913-928.
CHU J C. Mixed-integer programming model and branch-and-price-and-cut algorithm for urban bus network design and timetabling[J]. Transportation Research Part B: Methodological, 2018, 108: 188-216.
SHANG H Y, HUANG H J, WU W X. Bus timetabling considering passenger satisfaction: An empirical study in Beijing[J]. Computers & Industrial Engineering, 2019: 1155-1166.
SUN D, XU Y, PENG Z R. Timetable optimization for single bus line based on hybrid vehicle size model[J]. Journal of Traffic and Transportation Engineering, 2015, 2(3): 179-186.
WU Y H, YANG H, TANG J F, et al. Multi-objective re-synchronizing of bus timetable: model, complexity and solution[J]. Transportation Research Part C: Emerging Technologies, 2016, 67: 149-168.
刘环宇. 基于可靠性的公交时刻表优化设计研究 [D]. 北京: 北京交通大学, 2010.
LIU H Y. Study on bus timetable optimizaiton based on reliability [D]. Beijing: Beijing Jiaotong University, 2010.
陈玥祺, 朱昊. 上海市925路到站时刻表化运行可行性探讨[J]. 交通与运输, 2013(1): 58-61.
CHEN Y Q, ZHU H. Research into the feasibility of Shanghai route 925 arrival schedule operation[J]. Traffic & Transportation, 2013(1): 58-61.
吉婉欣, 杨东媛, 段征宇, 等. 基于公交准时化的时刻表制定方法研究[J]. 城市公共交通, 2010(10): 32-36.
JI W X, YANG D Y, DUAN Z Y, et al. Calculation method of timetable based on punctual transit[J]. Urban Public Transport, 2010(10): 32-36.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构