中山大学航空航天学院,广东 广州 510006
吴蓉(1990年生),女;研究方向:振动系统参数识别与结构损伤识别;E-mail:1547742272@qq.com
吕中荣(1975年生),男;研究方向:结构损伤识别与健康监测;E-mail:lvzhr@mail.sysu.edu.cn
纸质出版日期:2020-07-20,
收稿日期:2019-03-05,
扫 描 看 全 文
吴蓉,刘济科,吕中荣等.基于响应灵敏度法的时滞系统参数识别[J].中山大学学报(自然科学版),2020,59(04):74-78.
WU Rong,LIU Jike,LU Zhongrong,et al.Parameter identification of delayed system based on response sensitivity approach[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):74-78.
吴蓉,刘济科,吕中荣等.基于响应灵敏度法的时滞系统参数识别[J].中山大学学报(自然科学版),2020,59(04):74-78. DOI: 10.13471/j.cnki.acta.snus.2019.03.05.2019B019.
WU Rong,LIU Jike,LU Zhongrong,et al.Parameter identification of delayed system based on response sensitivity approach[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):74-78. DOI: 10.13471/j.cnki.acta.snus.2019.03.05.2019B019.
基于灵敏度分析,结合Tikhonov正则化和置信域约束,将时滞系统的参数识别反问题转化为一个标准的非线性最小二乘优化问题,提出一种基于响应灵敏度法的时滞系统的参数识别方法。以一个单自由度的线性时滞系统模型为例,对加速度进行灵敏度分析,然后进行参数识别。参数识别的数值模拟表明:该方法能有效识别简单时滞系统的参数,且具有识别精度高、收敛速度快、对噪声不大敏感的优点。
Based on sensitivity analysis
by introducing Tikhonov regularization and trust-region restriction
the inverse problem of delayed system - parameter identification is transformed into a normal nonlinear least squares optimization problem with trust region
and a parameter identification method for delayed system based on response sensitivity approach is proposed. A single-degree-of-freedom linear delayed system model is studied and the sensitivity analysis of acceleration is carried out. The numerical simulation of parameter identification shows that the proposed method can effectively identify the parameters of simple delayed system
and has the advantages of high identification accuracy
fast convergence speed and less sensitivity to noise. This numerical example verifies the feasibility and efficiency of the response sensitivity approach in the practical parameter identification of delayed systems.
时滞微分方程参数识别灵敏度法置信域约束
delay differential equations (DDE)parameter identificationresponse sensitivity approachtrust-region restriction
徐鉴,裴利军. 时滞系统动力学近期研究进展与展望[J]. 力学进展, 2006, 36(1): 17-30.
XU J, PEI L J. Time delayed system dynamics: recent progress and future development[J]. Advances in Mechanics, 2006, 36(1): 17-30.
KOLMANOVSKII V, MYSHKIS A. Introduction to the theory and applications of functional differential equations[M]. New York: Springer Science & Business Media, 2013.
LU Z R, WANG L. An enhanced response sensitivity approach for structural damage identification: convergence and performance[J]. International Journal for Numerical Methods in Engineering, 2017(111): 1231-1251.
ASL F M. Analysis of a system of linear delay differential equations[J]. Journal of Dynamic Systems, Measurement and Control, 2003(125): 215-223.
ARINO O, PITUK M. More on linear differential systems with small delays[J]. Journal of Differential Equations, 2001, 170(2): 381-407.
SHAMPINE L F, THOMPSON S. Solving ddes in matlab[J]. Applied Numerical Mathematics, 2001, 37(4): 441-458.
TIKHONOV A N. Solution of ill-posed problems problems and the regularization method[J]. Soviet Math Dokl, 1963(4): 1035-1038.
HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curves[J]. SIAM Review, 1992, 34(4):561-580.
MORE J J. The Levenberg–Marquardt algorithm: implementation and theory, in numerical analysis[C]//Proceedings of the 1977 Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics 630. Berlin: Springer Verlag, 1978: 105-116.
MADSEN K, NIELSEN H, TINGLEFF O. Method for non-linear least squares problems[M]. 2nd Edition. IMM, DTU, 2004.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构