纸质出版日期:2019,
网络出版日期:2019-3-25
扫 描 看 全 文
引用本文
阅读全文PDF
对一类具有饱和发生率和潜伏期的SEIR传染病模型进行研究,确定决定疾病灭绝或者持续存在的基本再生数,分析模型平衡点的存在性。首先,通过构造适当的Lyapunov函数,证明了无病平衡点的全局稳定性;另外,运用复合矩阵判定定理分析了地方病平衡点的渐近稳定性;最后,利用竞争系统定理,证明了地方病平衡点的全局稳定性。
A SEIR infectious disease model with saturated incidence and latency is studied. The basic number of regeneration that determines extinction or persistence of diseases is determined. The existence of the model‘s equilibrium point is analyzed. Firstly, the global stability of disease-free equilibrium point is proved by constructing the Lyapunov function appropriately. Then, the asymptotic stability of local diseases-equilibrium point is analyzed by using the composite matrix judgment theorem. Finally, the global stability of local diseases-equilibrium point is proved by applying the competition system theorem.
257
浏览量
247
下载量
0
CSCD
相关文章
相关作者
相关机构