纸质出版日期:2019,
网络出版日期:2019-1-25
扫 描 看 全 文
引用本文
阅读全文PDF
一个图的匹配多项式的所有根(系数)的绝对值的和称为这个图的匹配能级(Hosoya指标)。圈Ca+1上的一点和圈Cb+1上的一点粘结后得到的图称为“8”字图,记 ∞(a,b)(a≥2,b≥2)。首先给出了比较两个图匹配能级的一种新方法,利用这种方法研究了“8”字图的匹配能级和Hosoya指标,给出了点数相同的“8”字图之间匹配能级的一个完全排序。也给出这些图的Hosoya指标的一个完全排序。
LetGbe a graph and μ(Gx) denote the matching polynomial ofG. The sum of the absolute values of all the roots (all the coefficients) of μ(G,x) is called the matching energy (the Hosoya index). LetCa+1andCb+1be two cycles with a+1 vertices and b+1 vertices, respectively. The 8-shape graph ∞(a,b) is the graph with a+b+1 vertices obtained fromCa+1∪Cb+1by identifying a vertex ofCa+1with a vertex ofCb+1. A new method for comparing matching energies between two graphs is deduced. By using this new method, the matching energy and Hosoya index of the 8-shape graphs is studied. And a completely order of matching energy and Hosoya index of the 8-shape graphs withnvertices is obtained.
253
浏览量
209
下载量
2
CSCD
相关文章
相关作者
相关机构