1. 中山大学地球科学与地质工程学院,广东,广州,510275
2.
3. 新疆大学 干旱生态环境研究所,新疆,乌鲁木齐,830002
纸质出版日期:2019,
网络出版日期:2019-1-25,
扫 描 看 全 文
刘心云, 郑江华. 基于分形纹理特征的新疆罗布麻遥感分类[J]. 中山大学学报(自然科学版)(中英文), 2019,58(1):22-29.
LIU Xinyun, ZHENG Jianghua. The fractal theory texture-based classification of Apocynum venetum in Xinjiang, China[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2019,58(1):22-29.
刘心云, 郑江华. 基于分形纹理特征的新疆罗布麻遥感分类[J]. 中山大学学报(自然科学版)(中英文), 2019,58(1):22-29. DOI: 10.13471/j.cnki.acta.snus.2019.01.003.
LIU Xinyun, ZHENG Jianghua. The fractal theory texture-based classification of Apocynum venetum in Xinjiang, China[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2019,58(1):22-29. DOI: 10.13471/j.cnki.acta.snus.2019.01.003.
传统遥感影像仅利用光谱信息制约了分类精度,对基于分形提取纹理特征在罗布麻分类中的有效性进行了研究。采用分形中的双毯覆盖模型和传统的灰度共生矩阵(GLCM)方法分别提取了Worldview-2影像的纹理特征,结合光谱信息对影像进行最大似然法分类。比较了双毯覆盖模型中不同大小窗口下提取纹理特征的分类结果。结果显示:加入纹理特征后,较多光谱分类总体分类精度提高了 1.21%-8.63%,结合分形纹理较GLCM总体分类精度提高了大约两倍;仅分析罗布麻的精度,引入分形的分类精度提高到99.96%,引入 GLCM 精度却降低了 0.09%-0.12%;使用 5×5 滑动窗口提取纹理特征的分类效果最好。表明基于分形提取纹理特征的遥感分类能有效提高精度,对于Worldview2影像罗布麻的识别是可行的。
In order to improve the accuracy of the application of remote sensing image in plant classification beyond the weakness of only using spectral information
the texture features of
Apocynum venetum
a typical wild plant in Xinjiang
are extracted based on fractal theory from Worldview2 satellite images by means of double blanket coverage model which are further analyzed by Gray Level Co-occurrence Matrix (GLCM) methods for its classification. Maximum likelihood method is used to classify the textures
and the classification results from different moving window sizes (3×3
5×5
7×7 and 9×9) are compared. The results show that overall classification precision increased by 1.21% to 8.63% for the texture classification compared to traditional spectral information classification
the precision based on fractal theory is more than twice as much as GLCM based texture classification. The classification accuracy of
Apocynum venetum
increased to 99.96% when this parameter was combined with fractal-based textures. By contrast
the accuracy reduced by 0.09% to 0.12% with GLCM-based textures
and there is best classification precision when fractal-based texture was extracted with a 5×5 sliding block. Therefore
the textures based on fractal theory could effectively improve the accuracy of Worldview-2 images in plant classification by GLCM and double blanket coverage model.
分形双毯覆盖模型纹理特征Worldview-2罗布麻
fractal theorydouble blanket coverage modeltextureWorldview-2Apocynum venetum
0
浏览量
142
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构