1. 广东药学院医药信息工程学院,广东,广州,510006
2. 广东药学院基础学院,广东,广州,510006
3.
4. 广东工业大学信息工程学院,广东,广州,510006
纸质出版日期:2010,
网络出版日期:2010-3-25,
扫 描 看 全 文
刘红秀, 李洪波, 李卫东, 等. 基于电子鼻的鱼类新鲜度估计研究[J]. 中山大学学报(自然科学版)(中英文), 2010,49(2):28-30.
LIU Hongxiu, LI Hongbo, LI Weidong, et al. Research on the Fish Freshness Assessment Based on Electronic Nose[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2010,49(2):28-30.
以新西兰市场上最受欢迎的四类鱼(红甲鱼、鲂鱼、唇指鲈和(澳洲)鲹)为对象研究鱼的新鲜度。在同一实验室环境下,运用便携式电子鼻Cyranose 320测量这四类鱼被储藏第1,2,5,6,7,8,9,10(第3,4天的未测量)天后对应的同一样品,每个样品测量一次对应每个传感器平均采样2000个左右数据,获得大约2048×106[4(鱼)×8(天)×32(传感器)×2000(采样)=2048000]个数据。将实验数据进行特征提取及人工神经网络(ANN)分析处理,得到传感器对每类鱼每天的响应模式,进而估计鱼的新鲜度,获得了91%以上的正确识别率。研究结果表明该方法是实用可行的。
The freshness on four selected types of fish (Red Snapper
Gurnard
Tarakihi and Trevally) which are the most common fish in the New Zealand market was investigated. A portable Cyranose 320 Enose was used in our experiments under the same laboratory condition. It converted the odour of four selected types of fish to smell prints over days 1
2
5
6
7
8
9
and 10 after catching the fish (no data was collected on days 3 and 4). Approximately 2 000 samples were collected by each sensor during each process. About 2 048 000 data samples [4 (fish) × 8 (days) ×32 (sensors) ×2 000 (samples) =2 048 000] were obtained. Extracted features from the Enose sensors and artificial neural network (ANN)were used to assess the freshness of the fish by classifying the smell print data according to the day of data collection. The proposed system has been successful in identifying the number of days after catching the fish with an accuracy of up to 91%. The result showed that the proposed network architecture proved very suitable for fish freshness assessment.
电子鼻信息处理神经网络鱼的新鲜度估计
electronic noseinformation processingartificial neural networkfish freshness assessment
0
浏览量
165
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构