中山大学物理科学与工程技术学院,广东,广州,510275
纸质出版日期:2010,
网络出版日期:2010-5-25,
扫 描 看 全 文
方锡岩, 冯开喜, 丘斯伟, 等. 关联函数解析式的另一种推导方法[J]. 中山大学学报(自然科学版)(中英文), 2010,49(3):152-154.
FANG Xiyan, FENG Kaixi, QIU Siwei, et al. Another Derivation of Analytic Expression of Correlation Function[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2010,49(3):152-154.
探讨了d维欧氏空间中自由标量场的关联函数,用两种不同的方法推导求得了它的解析表达式,其中第二种方法为该文提出。文献上一般只讨论了到3维以及更低维空间的结果,作者推广得到了任意维的结果。计算3维空间的关联函数的方法一般是在3维空间的球坐标下直接进行积分求解,该文也应用这种方法在d维空间的球坐标系下直接积分得到了推广的结果。另一方面,发现可以通过选取合适的坐标系可有效地降低积分动量的维数,同样可以求得关联函数的解析式来。两种方法虽然用到的技术不同,但经过复杂的运算之后所得到的结果是一致的,结果表明:任意维空间的自由标量场的关联函数与变形Bessel函数只差一个有理因子,其中变形Bessel函数的阶数是由空间的维数所决定。
The analytic expression of correlation function of free scalar field in any dimensional Euclidean space is derived by two different methods
the second of which is proposed. The results in 3 and lower dimensional space are generally discussed in the literature
and the generalized result in arbitrary dimensional space is obtained. When studying the case in 3dimensional space
people often do the integration directly in the 3dimensional space using the sphere coordinates
and this method is also applied in this paper to get the generalized result. On the other hand
it is found that choosing the appropriate coordinate system can effectively reduce the integration variable dimension and finally arrive at the same result. The result shows that the correlation function of free scalar field in any dimensional space is related to the modified Bessel function
whose order is determined by the space dimension.
关联函数积分维数约化欧氏空间
correlation functionreduction of integration variable dimensionEuclidean space
0
浏览量
174
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
