CAO Feifeng, , ZHANG Shiqiang, et al. Parameter Optimization of Hydrologic Model Parameters based on Regional Sensitivity Analysis and SCEMUA Algorithm[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2011,50(2):120-126.
CAO Feifeng, , ZHANG Shiqiang, et al. Parameter Optimization of Hydrologic Model Parameters based on Regional Sensitivity Analysis and SCEMUA Algorithm[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2011,50(2):120-126.DOI:
Shuffled Complex Evolution Metropolis Algorithm(SCEM-UA) is an adaptive Markov Chain Monte Carlo sampler
which can be applied to parameter optimization of nonlinear hydrologic model and uncertainty analysis The efficiency and effectiveness of SCEMUA for sampling the posterior distribution of model parameters are discussed based on the case study of the Min River catchment The results show that SCEMUA algorithm is consistent
effective and efficient in inferring the parameter posterior distribution Moreover
the results of regional sensitivity analysis using samples from SCEMUA algorithm sampler show that sensitivity and posterior distribution of parameters are highly interdependent High sensitive parameters correspond with distinct peak in posterior distribution
while low sensitive parameters correspond with flat posterior distribution which could highlight the uncertainty of model parameters.
关键词
Markov链蒙特卡罗法参数优选SCEM-UA敏感性分析不确定性分析降雨径流概念模型
Keywords
Markov Chain Monte Carloparameter optimizationShuffled Complex Evolution Metropolis Algorithmsensitivity analysisuncertainty analysisconceptual rainfallrunoff model