1. 中山大学信息科学与技术学院,广东,广州,510006
2.
纸质出版日期:2014,
网络出版日期:2014-1-25,
扫 描 看 全 文
张雨浓, 王茹, 劳稳超, 等. 符号函数激励的WASD神经网络与XOR应用[J]. 中山大学学报(自然科学版)(中英文), 2014,53(1):1-7.
ZHANG Yunong, WANG Ru, LAO Wenchao, et al. Signum-Function-Activated WASD Neuronet and Its XOR Application[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2014,53(1):1-7.
基于权值与结构确定(WASD)算法,提出和构建了一种以非连续符号函数为隐层神经元激励函数的WASD神经网络模型。通过WASD算法,能有效地确定所构建网络的权值及网络的最优结构。该文也将此网络模型应用于XOR(异或)上,并详细讨论了在带噪类型不同时网络在此应用上的性能。计算机数值实验结果验证了所提出的权值与结构确定法能够有效地确定出网络的最优权值与结构,所构建的WASD网络在XOR应用上具有优秀的抗噪性能。另外,通过对比符号函数激励的WASD神经网络与幂函数激励的WASD神经网络在高维XOR应用方面的性能差异,证实了所提出的符号函数激励的WASD神经网络及算法在解决非线性问题时的优越性。
A discontinuous signum-function-activated (SFA) weights-and-structure-determination (WASD) neuronet model is presented and constructed based on the WASD algorithm. By this algorithm
the optimal weights and structure can be determined effectively. We apply the SFA-WASD neuronet model to XOR (i.e.
exclusive or)
and detail its performance in the XOR application with various types of disturbance noise considered. Numerical verification results substantiate the validity of the WASD algorithm in determining the optimal weights and structure
as well as the good anti-noise ability of the SFA-WASD neuronet in the XOR application. Moreover
for high-dimension XOR application
the performance comparison is made between the power-functionactivated (PFA) WASD neuronet and the SFA-WASD neuronet. The numerical results verify the superiority of the SFA-WASD neuronet in terms of solving nonlinear problems.
权值与结构确定(WASD)算法非连续符号函数神经网络XOR(异或)噪声高维
weights-and-structure-determination (WASD)algorithmdiscontinuous signum functionneuronetnoiseXORhigh-dimension
0
浏览量
373
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构