1. .南方医科大学生物医学工程学院,广东,广州,510515
2. 2.广东工业大学信息工程学院,广东,广州,510006
3. 3.广东药学院基础学院,广东,广州,510006
纸质出版日期:2014,
网络出版日期:2014-7-25,
扫 描 看 全 文
刘迎军, 杨志景, 董健卫, 等. 噪声环境中的EMD改进算法[J]. 中山大学学报(自然科学版)(中英文), 2014,53(4):25-34.
LIU Yingjun, YANG Zhijing, DONG Jianwei, et al. Improved EMD Method for Noisy Signal[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2014,53(4):25-34.
经验模式分解(Empirical Mode Decomposition
EMD)是近年来出现的一种自适应的信号分解算法,该方法受到了广泛的关注,被成功应用于许多领域。然而,当信号包含噪声时,它存在过度分解的弊端,容易受噪声的干扰,因而严重地限制了该方法的推广。为了解决这一问题,提出了一种改进的EMD方法:在首轮分解时,采用光滑样条拟合来代替原来的三次样条插值,可避免对噪声成分过度分解,从而极大地减少了噪声成分的干扰。仿真实验证实了新方法有显著的改进效果;两个实际气候数据序列分解的例子进一步说明了新方法的有效性和优越性。
Recently
an adaptive method called Empirical mode decomposition (EMD) is proposed for signal analysis. It has attracted great deal of attention and been used in many areas successfully since its advent. However
when the signal is contaminated by noise
EMD suffers from the drawback of over decomposition and likely is affected by noise
which severely restricts its applications. In order to solve this problem
an improved version of EMD is proposed. During the first decomposition circle
the original cubic spline interpolation is replaced by the smoothing spline fitting
which can avoid the over decomposition problem and then reduce the disturbance of noise component. Simulations validate the improvement of the new proposed method. Moreover
two real climate data examples show the effective and superiority of the new method for real signals.
经验模式分解噪声本征模函数光滑样条广义交叉验证
empirical mode decompositionnoiseintrinsic mode functionsmoothing splinegeneralized cross validation
0
浏览量
309
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构