1. 佛山科学技术学院计算机系,广东,佛山,528000
2.
纸质出版日期:2016,
网络出版日期:2016-5-25,
扫 描 看 全 文
周燕, 曾凡智, 赵慧民. 一种HSV空间上分层压缩感知的图像检索算法[J]. 中山大学学报(自然科学版)(中英文), 2016,55(3):77-82.
ZHOU Yan, ZENG Fanzhi, ZHAO Huimin. An image retrieval algorithm based on hierarchical compressive sensing in HSV space[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2016,55(3):77-82.
通过构建二维压缩感知测量模型,提出一种分层HSV特征和分层纹理特征提取与图像检索新算法。在图像HSV空间上引入网格离散划分和分层映射算子,定义一种基于HSV网格空间上的分层映射矩阵和拟灰度共生矩阵;设计归一化Gauss随机矩阵作为测量矩阵,使用二维压缩感知测量模型对上述两种矩阵进行压缩采样;采用PCA(Principal Component Analysis)方法获取上述两种分层采样矩阵的特征值序列,作为图像的分层HSV特征与分层纹理特征。最后融合上述两类特征综合计算图像间的整体相似度并实现图像检索。仿真实验表明,上述两类特征具有很好的可区分性,有效提高了图像检索效率,特别对复杂背景的图像检索性能更优
By constructing a two-dimensional (2D) compressive sensing (CS) measurement model
a new image retrieval algorithm is proposed by extracting hierarchical HSV features and texture features. Firstly
the ideas of grid discrete partition and hierarchical mapping in HSV space are introduced
and hierarchical mapping matrix and similar GLCM in HSV grid space are defined. Secondly
the normalized Gauss random matrix is designed as measurement matrix
and compressive sampling on the above two matrixes is performed by 2D CS measurement model. With using PCA(Principal Component Analysis)
the feature sequences as hierarchical HSV features and texture features are obtained from the above two hierarchical sampling matrixes. Finally
the above two features are infused to compute the overall similarity among images. Experimental results show that the above two features have good discrimination. It can improve the efficiency for image retrieval
and has good performance especially for images with complex backgrounds.
二维压缩感知分层纹理特征分层HSV特征拟灰度共生矩阵
two-dimensional compressive sensinghierarchical texture featurehierarchical HSV featuresimilar GLCM
0
浏览量
180
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构