纸质出版日期:2015,
网络出版日期:2015-9-25
扫 描 看 全 文
引用本文
阅读全文PDF
利用不连续微分系统的一阶平均法,研究从一类广义Lienard微分系统中心的周期环域分支出极限环的最大个数问题。通过对该系统的中心进行分段连续的多项式扰动,得到了该系统从中心的周期环域分支出极限环最大个数的线性估计。结果表明:不连续Lienard微分系统比其对应的连续微分系统可以分支出更多的极限环。
Using the first order averaging method for discontinuous differential system, the maximum number of limit cycles which bifurcate from the periodic annulus of the center for a class of generalized Lienard differential system is studied. By piecewise smooth polynomial perturbating, the linear estimation of the maximum number of limit cycles which bifurcate from the periodic annulus of this center is obtained. The result shows that there are more limit cycles which can bifurcate from the discontinuous Lienard differential system than the continuous one.
267
浏览量
448
下载量
0
CSCD
相关文章
相关作者
相关机构