1. 中山大学数据科学与计算机学院,广东,广州,510006
2. 华南理工大学自主系统和网络控制教育部重点实验室,广东,广州,510640
3. 广东顺德中山大学卡内基梅隆大学国际联合研究院,广东,佛山,528300
纸质出版日期:2016,
网络出版日期:2016-7-25,
扫 描 看 全 文
张雨浓, 肖争利, 丁思彤, 等. 带后续迭代的双极S函数激励的WASD神经网络[J]. 中山大学学报(自然科学版)(中英文), 2016,55(4):1-10.
ZHANG Yunong, XIAO Zhengli, DING Sitong, et al. WASD neural network activated by bipolar sigmoid functions together with subsequent iterations[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2016,55(4):1-10.
张雨浓, 肖争利, 丁思彤, 等. 带后续迭代的双极S函数激励的WASD神经网络[J]. 中山大学学报(自然科学版)(中英文), 2016,55(4):1-10. DOI:
ZHANG Yunong, XIAO Zhengli, DING Sitong, et al. WASD neural network activated by bipolar sigmoid functions together with subsequent iterations[J]. Acta Scientiarum Naturalium Universitatis SunYatseni, 2016,55(4):1-10. DOI:
结合Levenberg-Marquardt算法以及权值直接确定法这两种用于神经网络学习训练的方法,提出了一种带后续迭代、面向双极S (sigmoid)激励函数神经网络的权值与结构确定(weights-and-structure-determination
WASD)方法。该方法与MATLAB软件神经网络工具箱相结合,可以解决传统神经网络普遍存在的学习时间长、网络结构难以确定、学习能力和泛化能力有待提高等不足,同时具有较好的可行性和可操作性。以非线性函数的数据拟合为例,计算机数值实验和对比结果证实了WASD方法确定出最优隐神经元数和最优权值的优越性,最终得到的WASD神经网络具有更为优异的学习性能和泛化性能。
A weights-and-structure-determination (WASD) algorithm is proposed for the neural network using bipolar sigmoid activation functions together with subsequent iterations
which is the combination of the Levenberg-Marquardt algorithm and the weights-direct-determination method for neural network training. The proposed algorithm
combined with the Neural Network Toolbox of MATLAB software
aims at remedying the common weaknesses of traditional artificial neural networks
such as long-time learning expenditure
difficulty in determining the network structure
and to-be-improved performance of learning and generalization. Meanwhile
the WASD algorithm has good flexibility and operability. Taking data fitting of nonlinear functions for example
numerical experiments and comparison results illustrate the superiority of the WASD algorithm for determining the optimal number and optimal weights of hidden neurons. And the resultant neural network has more excellent performance on learning and generalization.
神经网络权值与结构直接确定后续迭代双极S激励函数数值实验
neural networksweights-and-structure-determination (WASD) algorithmsubsequent iterationsbipolar sigmoid activation functionsnumerical experiments
0
浏览量
859
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
