引入幂级数J-Armendariz环的概念,进一步扩展幂级数Armendariz环的研究。证明了:① 设T=〖JB((〗〖HL(2〗R〖〗M0〖〗S〖HL)〗〖JB))〗 是一个形式三角矩阵环,则T是幂级数JArmendariz环当且仅当R和S都是是幂级数JArmendariz环;② 设{Rα〖JB(|〗α∈Λ〖JB)〗}是一族环,则直积∏〖DD(X〗α∈Λ〖DD)〗Rα是幂级数JArmendariz环当且仅当每一个环 R
α
都是幂级数JArmendariz环; ③ 如果环R是幂级数JArmendariz环,满足J(R)[x]=J(R[x])
则R[x]是幂级数JArmendariz环。
Abstract
By introducing the concept of a power series JArmendariz ring
the study of power series Armendariz rings is further extended. It is shown that: ① let T=〖JB((〗〖HL(2〗R〖〗M0〖〗S〖HL)〗〖JB))〗 be a formal triangular matrix ring. Then T is a power seriesJArmendariz ring if and only if R
S are both power series JArmendariz rings; ② let {Rα〖JB(|〗α∈Λ〖JB)〗} be a family of rings. Then ∏〖DD(X〗α∈Λ〖DD)〗Rα is a power series JArmendariz ring if and only if every Rα is a power series JArmendarizring; ③ if R is a power series JArmendarizring and satisfies J(R)[x]=J(R[x])
then R[x]is a power series JArmendariz ring.
关键词
幂级数幂级数Armendariz环幂级数JArmendariz环幂级数弱Armendariz环
Keywords
power seriespower series Armendariz ringpower series JArmendariz ringweak power series Armendariz ring