PAN Junxi,DING Jing,LIU Shule.Molecular dynamics simulations of thermophysical properties of binary carbonate molten salt at nickel oxide surface[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):141-148.
PAN Junxi,DING Jing,LIU Shule.Molecular dynamics simulations of thermophysical properties of binary carbonate molten salt at nickel oxide surface[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):141-148. DOI: 10.13471/j.cnki.acta.snus.ZR20240051.
Molecular dynamics simulations of thermophysical properties of binary carbonate molten salt at nickel oxide surface
Molecular dynamics (MD) simulations were conducted in this research to investigate the interface system between a binary carbonate molten salt and a nickel oxide slab. In this study, we elucidate the trends of interface thermal resistance, thermal conductivity, and viscosity with increasing temperature by analyzing the density distribution and radial distribution functions (RDF). We also compare the differences in properties between single-phase molten salt and molten salt near the slab. Simulation results show that the increase in temperature results in an expansion of ion distance and weakening of their Van Der Waals interactions and Coulombic interactions, making energy transition more difficult. Consequently, there is a decrease in interface thermal resistance and thermal conductivity. Meanwhile, the viscosity decreases due to weaker interactions among ions as well as increased energy and movement tendencies.
BONK A, BRAUN M, SOTZ V A, et al, 2020. Solar salt- pushing an old material for energy storage to a new limit [J]. Appl Energy, 262:114535.
CAHILL D G, FORD W K, GOODSON K E, et al, 2003. Nanoscale thermal transport[J]. J Appl Phys, 93(2): 793-818.
CHEN H Z, LI B R, WEN B, et al, 2020. Corrosion resistance of iron-chromium-aluminium steel in eutectic molten salts under thermal cycling conditions[J]. Corros Sci, 173: 108798.
CHEN J, XU X F, ZHOU J, et al, 2022. Interfacial thermal resistance: Past, present, and future[J]. Rev Mod Phys, 94(2):025002.
CHOI Y K, KERN N R, KIM S, et al, 2022. CHARMM-GUI nanomaterial modeler for modeling and simulation of nanomaterial systems [J]. J Chem Theory Comput, 18(1): 479-493.
DARDEN T, YORK D, PEDERSEN L, 1993. Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems[J]. J Chem Phys, 98(12): 10089-10092.
DUAN L Q, YUE L, QU W J, et al, 2015. Study on CO2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane[J]. Energy, 93: 20-30.
ESNOUF R M, SMITH A C D, GROUT P J, 1988. The computer simulation of the metal-molten salt interface[J]. Philos Magazine A, 58(1): 27-35.
FERNáNDEZ A G, CABEZA L F, 2019. Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants[J]. Sol Energy Mater Sol Cells, 192: 179-187.
GHERIBI A E, CHARTRAND P, 2016. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations[J]. J Chem Phys, 144(8): 084506.
HANSEN J P, McDONALD I R, 2006. Theory of simple liquids [M]. Burlington: Academic Press.
JIANG Y F, SUN Y P, BRUNO F,et al, 2017. Thermal stability of Na2CO3-Li2CO3 as a high temperature phase change material for thermal energy storage[J].Thermochim Acta, 650: 88-94.
JANZ G J, ALLEN C B, BANSAL N P, et al, 1979. Physical properties data compilations relevant to energy storage. II. Molten salts: Data on single and multi-component salt systems[M]. Troy, New York: Molten Salts Data Center,Cogswell Laboratory Rensselaer Polytechnic Institute.
JO S, KIM T, IYER V G, et al, 2008. Software news and updates-CHARNIM-GUI: A Web-based grraphical user interface for CHARMM[J]. J Comput Chem, 29(11): 1859-1865.
LEE A A, PERKIN S, 2016. Ion-image interactions and phase transition at electrolyte-metal interfaces[J]. J Phys Chem Lett, 7(14): 2753-2757.
LIANG F, PAN G C Q, WANG W L, et al, 2022. Enhanced thermal transport at metal/molten salt interface in nanoconfinement: A molecular dynamics study[J]. J Mol Liq, 359:119362.
MARTINEZ L, ANDRADE R, BIRGIN E G, et al, 2009. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. J Comput Chem, 30(13): 2157-2164.
PAN G C Q, WEI X L, YU C, et al, 2020. Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications[J]. Appl Energy, 262:114418.
ROEST D L, BALLONE P, BEDEAUX D, et al, 2017. Molecular dynamics simulations of metal/molten alkali carbonate interfaces[J]. J Phys Chem C, 121(33): 17827-17847.
SOTZ V A, BONK A, STEINBRECHER J, et al, 2020. Defined purge gas composition stabilizes molten nitrate salt-experimental prove and thermodynamic calculations [J]. Sol Energy, 211: 453-462.
STEINBACH P J, BROOKS B R, 1994. New spherical-cutoff methods for long-range forces in macromolecular simulation[J]. J Comput Chem, 15(7): 667-683.
SUNHWAN J, TAEHOON K, IYER V G,et al,2008. CHARMM-GUI: A Web-based graphical user interface for CHARMM[J]. J Comput Chem, 29(11): 104-110.
THOMPSON A P, AKTULGA H M, BERGER R, et al, 2022. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J].Comput Phys Commun, 271:108171.
TIAN J X, ZHANG L B, 2016. Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids[J]. Int J Mod Phys B, 30(27):1650202.
YOUNG J M, MONDAL A, BARCKHOLTZ T A, et al, 2021. Predicting chemical reaction equilibria in molten carbonate fuel cells via molecular simulations[J]. Aiche J, 67(3):e16988.
YUAN F, LI M J, MA Z, et al, 2018. Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system[J]. Int J Heat Mass Transf, 118: 997-1011.