WEI Zhongshuang,HOU Wei,ZHAO Yan,et al.State of charge estimation of lithium-iron batteries based on extended Kalman filter[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):92-100.
WEI Zhongshuang,HOU Wei,ZHAO Yan,et al.State of charge estimation of lithium-iron batteries based on extended Kalman filter[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):92-100. DOI: 10.13471/j.cnki.acta.snus.2023B012.
State of charge estimation of lithium-iron batteries based on extended Kalman filter
电池的荷电状态(SoC,state of charge)是锂离子电池最基本的参数之一,不能直接测量得到。本文基于二阶Thevenin模型对磷酸铁锂电池进行建模分析,通过混合脉冲功率特性(HPPC,hybrid pulse power characteristic)实验对不同SoC处的模型参数进行识别。基于MATLAB/Simulink平台,搭建了变参数二阶Thevenin模型与扩展卡尔曼滤波(EKF,extended Kalman filter)算法相结合的估算系统。仿真结果表明,估算系统在不同工况下的仿真误差不超过2.5%,为锂离子电池管理系统的搭建提供了支持。
Abstract
The state of charge of the battery is one of the fundamental parameters of the lithium-ion battery, which can't be measured directly. In this paper, the second-order Thevenin model is used to analyze the characteristics of lithium-iron phosphate battery, and the model parameters at different SoC are identified through the hybrid pulse power characteristic (HPPC) experiment. Based on MATLAB/Simulink platform, an estimation system combining variable parameter second-order Thevenin model and extended Kalman filter (EKF) algorithm is built. The simulation results show that the simulation error of the estimation system is less than 2.5% under different working conditions, which provides support for the development of lithium-ion battery management system.
CHUN H Y, KIM J S, HAN S H,2019. Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network[J].IFAC Papers OnLine, 52(4): 129-134.
NEMES R, CIORNEI S, RUBA M, et al, 2019. Modeling and simulation of first⁃order Li⁃ion battery cell with experimental validation[C]// The 8th International Conference on Modern Power Systems.
ZHANG X, LU J L, YUAN S F, et al, 2017. A novel method for identification of lithium⁃ion battery equivalent circuit model parameters considering electrochemical properties[J]. Journal of Power Sources, 345: 21-29.