ZHENG Weishan.Sharp error estimate for fractional Volterra integro-differential equations with delay[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):152-158.
ZHENG Weishan.Sharp error estimate for fractional Volterra integro-differential equations with delay[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):152-158. DOI: 10.13471/j.cnki.acta.snus.2022A077.
Sharp error estimate for fractional Volterra integro-differential equations with delay
Spectral methods are developed for solving fractional differential equations with vanishing delay numerically. Sharp error estimates are carried out, which indicates that the error of solution and the error of exact fractional derivative decay exponentially in both
CAI H, CHEN Y, 2018. A fractional order collocation method for second kind Volterra integral equations with weakly singular kernels[J]. J Sci Comput, 75(2): 970-992.
CANUTO C, HUSSAINI M Y, QUARTERONI A, et al, 2006. Spectral methods: Fundamentals in single domains[M]. Berlin: Springer.
CHEN Y, TANG T, 2009. Spectral methods for weakly singular Volterra integral equations with smooth solutions[J]. J Comput Appl Math, 233(4): 938-950.
CHEN Y, TANG T, 2010. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel [J]. Math Comput, 79: 147-167.
GU Z, 2020. Chebyshev spectral collocation method for system of nonlinear Volterra integral equations[J].Numer Algorithms, 83(1): 243-263.
KHAN S A, SHAH K, ZAMAN G, et al, 2019. Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative[J]. Chaos, 29(1): 013128.
MASTROIANNI G, OCCORSIO D, 2001. Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey[J]. J Comput Appl Math, 134(1/2): 325-341.
NEVAI P, 1984. Mean convergence of Lagrange interpolation. III[J]. Trans Amer Math Soc, 282(2): 669-698.
RAGOZIN D L, 1970. Polynomial approximation on compact manifolds and homogeneous spaces[J]. Trans Amer Math Soc, 150(1): 41-53.
RAGOZIN D L, 1971. Constructive polynomial approximation on spheres and projective spaces[J]. Trans Amer Math Soc, 162: 157-170.
SHAH K, JARAD F, ABDELJAWAD T, 2020. On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative[J]. Alex Eng J, 59(4): 2305-2313.
TANG T, XU X, CHENG J, 2008. On spectral methods for Volterra integral equations and the convergence analysis[J]. J Comput Math, 26(6): 825-837.
TOHIDI E, NAVID SAMADI O R, SHATEYI S, 2014. Convergence analysis of Legendre pseudospectral scheme for solving nonlinear systems of Volterra integral equations[J]. Adv Math Phys, 2014: 1-12.
WEI Y, CHEN Y, 2012. Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions[J]. Adv Appl Math Mech, 4(1): 1-20.
YANG Y, CHEN Y, HUANG Y, 2014. Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations[J]. Acta Math Sci, 34(3): 673-690.
ZENG F, LIU F, LI C, et al, 2014. A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation[J]. SIAM J Numer Anal, 52(6): 2599-2622.
ZHANG R, ZHU B, XIE H, 2013. Spectral methods for weakly singular Volterra integral equations with pantograph delays[J]. Front Math China, 8(2): 281-299.
ZHENG W S, 2021. Jacobi convergence analysis for delay Volterra integral equation with weak singularity[J]. Math Numer Sin, 43(2): 253-260.