LU Songsong,ZHAO Xiaxia,QI Chongxia,et al.Hemoglobin gene identification, expression and molecular evolution analysis in Eospalax baileyi[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):49-59.
LU Songsong,ZHAO Xiaxia,QI Chongxia,et al.Hemoglobin gene identification, expression and molecular evolution analysis in Eospalax baileyi[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):49-59. DOI: 10.13471/j.cnki.acta.snus.2021E018.
Hemoglobin gene identification, expression and molecular evolution analysis in Eospalax baileyi
The study was aimed to reveal the mechanism of elevated hemoglobin oxygen affinity of Plateau zokor (
Eospalax baileyi
).By using a comparative genomic and transcriptomic analysis of the
α
and
β
gene clusters in the plateau zokor to characterize the changes in the size and membership composition of the
α
and
β
gene families within the Spalacidae, the study evaluated the evolutionary changes in the developmental regulation of gene expression of the plateau zokor and explored the potential impact of positive selection sites on protein structure and function. The results showed that the plateau zokor α and β gene clusters contain three
α
(5ʹ-
α
E
,
α
A
,
α
Q
-3ʹ) and seven
β
(5ʹ-
ε
,
γ
,
γ1
,
γ2
,
σ
(pesudo),
β1
,
β2
(pesudo)-3ʹ) genes respectively;in addition to the conventional adult expression genes
α
A
and
β1
, adult plateau zokor expressed an extra embryonic
α
E
gene;the twelve amino acid mutations on heme “pocket” opening of β1 subunit might be able to increase the stability and hydrophilicity of the region, and slightly increases the volume of the pocket (active center). The results also suggested that the abnormally high oxygen affinity of plateau zokor might result from the expression of embryonic
α
E
gene in adults;the increased stability of α
E
and β1 subunits and the decrease of α
A
subunit stability may lead to accumulation of α
E
type Hb (α
E
β1)
2
to a concentration similar to α
A
type (α
A
β1)
2
. It was the first report that the
α
E
gene is highly expressed in adult mammals, this phenomenon may be induced by extreme low oxygen environment, or it may be caused by changes in the genetic basis of the
α
E
gene regulatory region. The specific mechanism needs further study.
STOR Z, JAY F. Hemoglobin-oxygen affinity in high-altitude vertebrates: Is there evidence for an adaptive trend? [J] Journal of Experimental Biology, 2016, 219(20): 3190-3203.
JENSEN B, STORZ J F, FAGO A. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice [J].Comparative Biochemistry and Physiology A—Molecular & Integrative Physiology, 2016, 195: 10-14.
CHANDRASEKHAR N, HOFFMANN F G, LANIER H C, et al. Intraspecific polymorphism, interspecific divergence, and the origins of function-altering mutations in deer mouse hemoglobin [J]. Molecular Biology and Evolution, 2015, 32(4): 978-997.
OSTOJIC H, CIFUENTES V, MONGE C. Hemoglobin affinity in Andean rodents [J]. Biological Research, 2002, 35(1): 27.
STORZ J F, SCOTT G R, CHEVIRON Z A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates [J]. The Journal of Experimental Biology, 2010, 213(24): 4125-4136.
ZENG J, WANG Z, SHI Z. Metabolic characteristics and some physiological parameters of mole rat (Myospalax baileyi) in alpine area [J]. Acta Biologica Plateau Sinica, 1984, 3: 163-171.
PU P, LU S, NIU Z, et al. Oxygenation properties and underlying molecular mechanisms of hemoglobins in plateau zokor (Eospalax baileyi) [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2019, 317(5): R696-R708.
WEBER R E, JARVIS J U M, FAGO A, et al. O2 binding and CO2 sensitivity in haemoglobins of subterranean African mole rats [J]. Journal of Experimental Biology, 2017, 220(21): 3939-3948.
STORZ J F, RUNCK A M, MORIYAMA H, et al. Genetic differences in hemoglobin function between highland and lowland deer mice [J]. Journal of Experimental Biology, 2010, 213(15): 2565-2574.
STORZ J, WEBER R, FAGO A. Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content [J]. Comparative Biochemistry and Physiology A—Molecular & Integrative Physiology, 2011, 161: 265-270.
BRITTAIN T. Molecular aspects of embryonic hemoglobin function [J]. Molecular Aspects of Medicine, 2002, 23(4): 293-342.
NATARAJAN C, HOFFMANN F, WEBER R, et al. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings [J]. Science, 2016, 354: 336-339.
CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: Architecture and applications [J]. BMC Bioinformatics, 2009, 10(1): 421.
GRABHERR M G, HAAS B J, YASSOUR M, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data [J]. Nature Biotechnology, 2013, 29: 644.
EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
HUELSENBECK J P, RONQUIST F. MRBAYES: Bayesian inference of phylogenetic trees [J]. Bioinformatics, 2001, 17(8): 754-755.
YANG Z. PAML 4: Phylogenetic analysis by maximum likelihood [J]. Molecular Biology and Evolution, 2007, 24(8): 1586-1591.
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J]. Nature Methods, 2012, 9(4): 357-359.
WEBB B, SALI A. Comparative protein structure modeling using Modeller [J]. Current Protocols in Protein Science, 2016, 86(1): 2.9.1-2.9.37.
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
HOFFMANN F G, STORZ J F, GORR T A, et al. Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates [J]. Molecular Biology and Evolution, 2010, 27(5): 1126-1138.
HOFFMANN F G, OPAZO J C, STORZ J F. New genes originated via multiple recombinational pathways in the β-globin gene family of rodents [J]. Molecular Biology and Evolution, 2008, 25(12): 2589.
OPAZO J C, HOFFMANN F G, STORZ J F. Genomic evidence for independent origins of β-like globin genes in monotremes and therian mammals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1590-1595.
AGUILETA G, BIELAWSKI J P, YANG Z. Gene conversion and functional divergence in the β-globin gene family [J]. Journal of Molecular Evolution, 2004, 59(2): 177-189.
OPAZO J C, HOFFMANN F G, NATARAJAN C, et al. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression [J]. Molecular Biology and Evolution, 2014, 32(4):871-887.
STORZ J F, HOFFMANN F G, OPAZO J C, et al. Adaptive functional divergence among triplicated alpha-globin genes in rodents [J]. Genetics, 2008, 178(3):1623-1638.