HU Xiaoyan,SANG Bo.Zero-Hopf bifurcations of a family of Z2 symmetric cubic jerk systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):169-174.
HU Xiaoyan,SANG Bo.Zero-Hopf bifurcations of a family of Z2 symmetric cubic jerk systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):169-174. DOI: 10.13471/j.cnki.acta.snus.2021A027.
Zero-Hopf bifurcations of a family of Z symmetric cubic jerk systems
, i.e. an isolated equilibrium with a zero eigenvalue and a pair of purely imaginary eigenvalues. Using this result, the number of small amplitude limit cycles is studied for the perturbed system. By the help of averaging theory of fourth order, it is proved that at most 5 small amplitude limit cycles can bifurcate from the equilibrium and the bound can be reached, which improves a previous result.
BARREIRA L, LLIBRE J, VALLS C, 2020. Integrability and zero-Hopf bifurcation in the Sprott A system[J]. Bull Sci Math, 162: 102874.
BRAUN F, MEREU A C, 2021. Zero-Hopf bifurcation in a 3-D jerk system[J]. Nonlinear Anal Real World Appl, 59:103245.
KRAWCEWICZ W, WU J, 1997. Theory of degrees with applications to bifurcations and differential equations[M]. New York: Wiley.
LLIBRE J, MAKHLOUF A, 2020. Zero-Hopf periodic orbits for a Rössler differential system[J]. Int J Bifurcation Chaos, 30(12): 2050170.
LLIBRE J, MESSIAS M,de CARVALHO REINOL A, 2020. Zero-Hopf bifurcations in three-dimensional chaotic systems with one stable equilibrium[J]. Int J Bifurcation Chaos, 30(13): 2050189.
LLIBRE J, NOVAES D D, TEIXEIRA M A, 2014. Higher order averaging theory for finding periodic solutions via Brouwer degree[J]. Nonlinearity, 27(3): 563-583.
LLIBRE J, ZHANG X, 2009. Hopf bifurcation in higher dimensional differential systems via the averaging method[J]. Pacific J Math, 240(2): 321-341.
SANG B, HUANG B, 2020. Zero-Hopf bifurcations of 3D quadratic jerk system[J]. Mathematics, 8(9): 1454.