ZHANG Xuefeng,YE Bobing,TAN Zhuangbin,et al.Orbit and constellation design for TianQin: progress review[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):123-128.
ZHANG Xuefeng,YE Bobing,TAN Zhuangbin,et al.Orbit and constellation design for TianQin: progress review[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):123-128. DOI: 10.13471/j.cnki.acta.snus.2020.11.02.2020B112.
Orbit and constellation design for TianQin: progress review
The TianQin project plans to deploy three drag-free controlled satellites in circular high Earth orbits at an altitude of 10
5
km. The satellites form a nearly equilateral-triangle constellation, and exchange high-precision laser interferometric links to detect low-frequency gravitational waves in the mHz frequency band. TianQin features a geocentric concept, and is facing the challenge of designing and utilizing high Earth orbits to the best effect. In this paper, we briefly summarize the main progresses on TianQin’s orbit and constellation design, including constellation stability optimization, orbital orientation and radius selection, the Earth-Moon’s gravity disturbance evaluation, and eclipse avoidance.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole Merger[J]. Phys Rev Lett, 2016, 116: 061102.
LISA. A proposal in response to the ESA call for L3 mission concepts[R]. 2017.
LISA. Unveiling a hidden Universe, assessment study report[R]. ESA publication # ESA/SRE(2011)3, 2011.
LUO Z R, BAI S, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Adv Mech, 2013, 43: 415.
NASA. Gravitational-wave mission concept study final report[R]. 2012.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 2016, 33: 035010.
HISCOCK B, HELLINGS R W. OMEGA: a space gravitational wave MIDEX mission[J]. Bull Am Astron Soc, 1997, 29: 1312.
TINTO M, de ARAUJO J C N, AGUIAR O D, et al. Searching for gravitational waves with a geostationary interferometer[J]. Astropart Phys, 2013, 48: 50.
McWILLIAMS S T. Geostationary antenna for disturbance-free laser interferometry (GADFLI)[EB/OL].https:// arxiv.org/abs/1111.3708https://arxiv.org/abs/1111.3708.
CONKLIN J W, BUCHMAN S, AGUERO V, et al. LAGRANGE: Laser gravitational-wave antenna at geo-lunar lagrange points [EB/OL].https:// arxiv.org/abs/1111.5264https://arxiv.org/abs/1111.5264.
KAWAMURA S, NAKAMURA T, ANDO M, et al. Space gravitational-wave antennas DECIGO and B-DECIGO[J]. Int J Mod Phys D, 2018, 27: 1845001.
张雪峰,李洪银,梅健伟.基于LISA卫星概念的天琴卫星热稳定性估算(技术报告)[R]. 2018.
ZHANG X F, LI H Y, MEI J W. Thermal stability estimation of TianQin satellites based on LISA-like thermal design concept (internal technical report)[R]. 2018.
ZHANG X F. TianQin theoretical group: progress on mission concept studies [C]// Plenary Talk at 2018 Annual Conference of HUST Center for Gravitational Experiments and SYSU TianQin Research Center,2019.
郑浩颖.天琴卫星的空间外热流分析与隔离控制研究[D].广州:中山大学,2020.
ZHENG H Y. Analysis and control studies of external heat flow of TianQin Spacecraft[D]. Guangzhou: Sun Yat-sen University, 2020.
FOLKNER W M, HECHLER F, SWEETSER T H, et al. LISA orbit selection and stability[J]. Class Quantum Grav, 1997, 14: 1405.
TINTO M , DHURANDHAR S V. Time-delay interferometry[J]. Living Reviews in Relativity, 2014,17:6.
YE B, ZHANG X, ZHOU M, et al. Optimizing orbits for TianQin[J]. Int J Mod Phys D, 2019, 28: 1950121.
胡寿村,赵玉晖,季江徽.天琴任务轨道设计与分析报告(技术报告)[R]. 2015.
HU S C, ZHAO Y H, JI J H. Internal report by Purple Mountain Observatory (internal technical report)[R]. 2015.
WAN X B,ZHANG X M,LI M. Analysis of long-period drift characteristics for orbit configuration of the Tianqin Mission[J]. Chinese Space Science and Technology, 2017, 37(3): 110-116.
NASA. General mission analysis tool [CP/OL].http://gmatcentral.org/http://gmatcentral.org/.
TAN Z, YE B, ZHANG X. Impact of orbital orientations and radii on TianQin constellation stability[J]. Int J Mod Phys D, 2020, 29: 2050056.
WEISS R, MUEHLNER D. Electronically coupled broad-band gravitational antenna, Quarterly Progress Report[R]. Research Laboratory of Electronics (MIT), 1972, 105: 54.
HARMS J. Terrestrial gravity fluctuations[J]. Living Reviews in Relativity, 2019, 22: 6.
香山科学会议组委会.会议纪要[C]//香山科学会议第649次学术讨论会,2019.
ZHANG X, LUO C, JIAO L, et al. Effect of Earth-Moon's gravity on TianQin's range acceleration noise,[EB/OL].http:// arxiv.org/abs/2012.03264http://arxiv.org/abs/2012.03264.
胡文瑞. 空间引力波探测方案的探讨[J]. 科技导报,2018,36(12):1.
HU W R.Comments on spaceborne gravitational-wave detector mission concepts[J]. Sci Technol Rev,2018,36(12):1.
LUO Z R,ZHANG M,JIN G,et al. Introduction of Chinese space-borne gravitational wavedetection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020,7(1):3-10.
HECHLER M, HERSCHEL J. Planck and GAIA orbit design[C]//Libration Point Orbits and Applications-Proceedings of the Conference. Singapore: World Scientific, 2003: 115.
GAO S, ZHOU W, LIANG W, et al. Trajectory analysis and design for relay satellite using Lagrange L2 point of Earth-Moon system[J]. Journal of Deep Space Exploration, 2017, 4(2): 122-129.
YE B, ZHANG X, DING Y, et al. Eclipse avoidance in TianQin orbit selection[EB/OL].https:// arxiv.org/abs/2012.03269https://arxiv.org/abs/2012.03269.