YANG Fanghao,LV Zhongrong,WANG Li.An identification method for groundwater point pollution source identification based on sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):40-48.
YANG Fanghao,LV Zhongrong,WANG Li.An identification method for groundwater point pollution source identification based on sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):40-48. DOI: 10.13471/j.cnki.acta.snus.2019.07.12.2019B082.
An identification method for groundwater point pollution source identification based on sparse regularization
This paper proposes a method based on sparse regularization to identify groundwater point pollution sources. Firstly
the time domain finite element discretized equation of groundwater one-dimensional convection-diffusion equation is used to obtain the frequency domain equation by Laplace transform
and then the objective function of the groundwater point pollution source identification problem constrained by the
l
1
norm term is established
thus overcoming the ill-posed problem of the point source identification due to sparse spatial distribution. The identification equation is then solved iteratively using the alternating optimization method. The research results show that the proposed method can effectively identify the position and intensity changes of groundwater pollution sources under noise conditions.
WANG J R, HU L T. Advances in mathematical methods of groundwater pollution source identification[J]. Advances in Water Science, 2017, 28(6): 943-952.
SKAGGS T H, KABALA Z J. Recovering the release history of a groundwater contaminant[J]. Water Resources Research, 1994, 30(1): 71-79.
LI G, LIU J, FAN X, et al. A new gradient regularization algorithm for source term inversion in 1D solute transportation with final observations[J]. Applied Mathematics and Computation, 2008, 196(2): 646-660.
HUANG C H, LI J X, KIM S. An inverse problem in estimating the strength of contaminant source for groundwater systems[J]. Applied Mathematical Modelling, 2008, 32(4): 417-431.
XING L Y, ZHANG G Z. Reconstruction of groundwater pollution source term with improved conjugate gradient algorithm[J]. Water Resources Protection,2017,33(3):42-46+58.
ONYARI E, TAIGBENU A. Inverse Green element evaluation of source strength and concentration in groundwater contaminant transport[J]. Journal of Hydroinformatics, 2017, 19(1): 81-96.
MAZAHERI M, SAMANI J M V, SAMANI H M V. Mathematical model for pollution source identification in rivers[J]. Environmental Forensics, 2015, 16(4): 310-321.
WANG Z, ZHANG W, WU B. Regularized optimization method for determining the space-dependent source in a parabolic equation without iteration[J]. Journal of Computational Analysis and Applications, 2016, 20(6):1107-1126.
YU X X, ZHANG L, LI A G. Sparse system identification algorithm for air pollution source localization[J]. Journal of Tsinghua University(Science and Technology),2013,53(8):1077-1081.
HASE N, MILLER S M, MAAB P, et al. Atmospheric inverse modeling via sparse reconstruction[J]. Geoscientific Model Development, 2017, 10(10): 3695-3713.
PAN T C, LV Z R,WANG L. Steady-state heat source identification based on sparse regularization [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020,59(1):43-49.
宋绍禹. 基于稀疏正则化的声源识别算法研究[D]. 重庆:重庆大学,2018.
SONG S Y. Algorithm Study of Sound Sources Identification Based on Sparsity Regularization[D]. Chongqing: Chongqing University,2018.
杨金忠, 蔡树英, 王旭升. 地下水运动数学模型[M]. 北京:科学出版社, 2009.
ZHANG C D, XU Y L. Comparative studies on damage identification with Tikhonov regularization and sparse regularization[J]. Structural Control and Health Monitoring, 2016, 23(3): 560-579.
BECK A. On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes[J]. SIAM Journal on Optimization, 2015, 25(1): 185-209.