SUN Wenbing,ZHENG Linghong.The generalization of Hermite-Hadamard type fractional integrals inequalities for preinvex functions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):149-157.
SUN Wenbing,ZHENG Linghong.The generalization of Hermite-Hadamard type fractional integrals inequalities for preinvex functions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):149-157. DOI: 10.13471/j.cnki.acta.snus.2019.07.02.2019A055.
The generalization of Hermite-Hadamard type fractional integrals inequalities for preinvex functions
An identity with parameter is constructed via Riemann-Liouville fractional integrals on the invex subset.Using the constructed integral identity as the auxiliary function
some new Hermite-Hadamard type fractional integrals inequalities are derived
whose absolute values of the derivatives of the functions are preinvex.When the parameters are taken some specific values
some integral inequalities with different forms are obtained.
preinvex functionsHermite-Hadamard type inequalitiesRiemann-Liouville fractional integralsparametergeneralization
references
WEIR T, MOND B. Pre-invex functions in multiple objective optimization [J].J MathAnal Appl,1988,136: 29-38.
WEIR T, JEYAKUMAR V. A class of nonconvex functions and mathematical programming [J].Bull Austral Math Soc,1988,38: 177-189.
SUN W B, LIU Q. New Hermite-Hadamard type inequalities for<math id="M202"><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>m</mi><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49500736&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49500751&type=7.958666802.96333337-convex functions and applications to special means [J].J Math Inequal,2017,11(2): 383-397.
İSCAN İ. Hermite-Hadamard type inequalities for harmonically convex functions [J].Hacet J Math Stat,2014,43(6): 935-942.
SUN W B. Hadamard-type inequalities for products of (h,m)-convex functions and its applications [J].Journal of University of Chinese Academy of Sciences, 2018,35(2): 145-153.
DRAGOMIR S S, AGARWAL R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].Appl Math Lett,1998,11: 91-95.
NOOR M A. Hermite-Hadamard integral inequalities for Log-Preinvex functions [J].J Math Anal Approx Theory,2007,2: 126-131.
BARANI A, GHAZANFARI A G, DRAGOMIR S S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex [J].Journal of Inequalities and Applications,2012,2012: 247.
AWAN M U, CRISTESCU G, NOOR M A , et al. Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions [J]. U P B Sci Bull, Series A, 2017,79(3): 33-44.
NOOR M A , NOOR K I ,MIHAI M V, et al. Fractional Hermite-Hadamard inequalities for some classes of differentiable preinvex functions [J]. U P B Sci Bull (Series A),2016,78(3): 163-174.
CHEN F X. On the generalization of some Hermite-Hadamard inequalities for functions with convex absolute values of the second derivatives via fractional integrals [J].Ukr Mat Zh,2018,70(12): 1696-1706.
SUN W B. New Hermite-Hadamard-type inequalities for s-convex functions via fractional integrals [J].Journal of Zhejiang University (Science Edition),2017,44(5): 531-537.
The Existence and Multiplicity of Positive Solutions of Generalized p-Laplacian Boundary Value Problems
Related Author
BAI Dingyong
ZUO Minxian
Related Institution
School of Mathematics and Information Science∥Key Laboratory of Mathematics and Interdisciplinary Science of Guangdong Higher Education Institutes, Guangzhou University